
1

INTERVIEW

There are many leading developers on the fore-
front of the market who share this view, but are
also willing to waiver it depending on various

circumstances. Andrew Embler, CTO of Concrete5, is
such a man. A few questions were posed towards An-
drew and his success story behind Concrete5. To get a
real understanding of what re-inventing the wheel is and
when is it really a valid excuse, we'll be taking a look at
Andrews response in the brief interview...

What prompted you to get involved with the
creation of Concrete 5 and what would you say
MVC (model view controller) has to offer over
other models in PHP?
We started working on what would ultimately become
concrete5 in late 2003. As with many things on the web,
this CMS actually was born out of a real need for a real
project – in this case a Lewis and Clark bicentennial site
for the Ad Council. I was the tech lead on the project,
and worked with Franz (concrete5's CEO) to implement
what we knew we needed for the site. This included an
early version of our in-context editing interface. Between
2003 and 2008, we improved upon Concrete CMS and
kept it an internal, commercial CMS for use with our
clients. In 2008, I started working internally on a nearly
complete rewrite for Concrete version 5.0. This project
became known as concrete5, and we thought the code
had so much potential that we decided to try and get it
used as widely as possible, and so we released it open
source in the fall of that year.

As far as the model-view-controller pattern goes,
Concrete CMS initially didn't really adhere to MVC at
all. We started as most PHP projects start: quickly, with-
out a tremendous amount of initial design (beyond the
concept of blocks and collections/pages – which still re-
main pretty unchanged from our original version 1.0.).
During the interim years between 1.0 and the complete
rewrite of concrete5, I had the opportunity to work with
frameworks like CakePHP and Code Igniter, and their
implementations of MVC really appealed to me. Going
back to Concrete CMS without those pieces available
felt really limiting, and when it came time for version 5.0,
I knew I wanted some of those MVC concepts to make
their way into concrete5.

Tackling the 'real' parts of PHP like any language
can be tricky enough, so for the novices out
there, if you had to choose a framework what
would it be and why?
I'd say concrete5 – but then again I might be a bit bi-
ased. In all seriousness, if you're tackling a website that
needs some real content management and in-browser
editing, I think concrete5 is a great choice, especially
when you can't necessarily see how the site might grow
and mature in the future. concrete5 strikes a nice bal-
ance between being easy to edit with and being useful
and extremely extendable for developers who want to
make any type of website.

If what you're building is more of a web application
than a website – and I realize the distinction is a fuzzy

Should you really
re-invent the wheel?
It's often debated whether or not as a website developer /
designer, that you should or should not re-invent the wheel.
For clarification – this usually implies, anything such as
frameworks or scripts that have already been commercially
or non commercially developed to a considerable level
already.

What you will learn...
• Further in-depth knowledge about OO & Frameworks

What you should know...
• A good understanding of PHP
• Understanding of OO Programming Paradigm

Should you really re-invent the wheel?

2

they pick up concrete5. Judging by our developer com-
munity, once they learn the concepts they don't really
mind; in fact, they're pretty excited.

Frameworks are a great way in which one can
learn new methods through forced industry
practices. Although there are cases in the UK
alone - where an aptitude to develop web
applications in Zend for instance, is desirable. Is it
truly beneficial when starting out, to implement
the use of such frameworks?
This purely comes down to opinion. However, there are
some facts that linger. Learning a framework, especially
when one is not necessarily adept in all the intricacies of
the language being used – can be time consuming and
costly (if you're running a business or work as a free-
lancer). It is often desirable to get the work done without
having to learn on the job as this proves for a more effi-
cient meeting of deadlines and smoother work flow.

Of course, there will be many occasions when
learning on the job occurs, but you have to ask
yourself. Is this going to help you progress and
gain a good rapport with some of your clients, or
is this going to cause massive delays within the
project deadlines?
On the flip-side however, frameworks can dramatically
reduce the number of hours it would take to develop
a web based application by providing an abstraction
layer for the databases and by providing many methods
and functionality to menial tasks you would otherwise

have to implement yourself. A framework if used prop-
erly (also, if the user understands it) can be a life saver
as well as a great development tool in any freelancers
arsenal.

What about myself?
Having seen the many frameworks out there ranging
from Zend to Cake PHP. I have taken a similar approach
to everything stated above. The Zend framework is the
weapon of choice when developing a web application
which is going to be vast and complex.

and sometimes arbitrary one – and perhaps has less
need for content management, I'd recommend Sym-
fony 2 or Zend Framework. We actually use a number
of Zend Framework libraries in concrete5, and couldn't
do a lot of what we do if it weren't for that project.

Before the creation of Concrete 5. What was your
biggest gripe (if you don't mind saying) about
the state of PHP frameworks?
For me, frameworks didn't quite go far enough. This is
a matter of opinion, and I imagine there are those out
there who'd violently disagree with me, but I always
found it a shame when frameworks didn't support the
concepts of authentication, user objects, extendable
data types/attributes, along with the interfaces to sup-
port them. I always disliked the fact that I had to code up
so much of the UI when working with PHP frameworks.
Fortunately, with great UI libraries like TwitterBootstrap
now available, it's easier than ever to make interfaces
that look great for custom web applications.

Playing a bit of devils advocate here, I've always
sided with the argument - don't re-invent the
wheel, what do you disagree or agree about this
when in the context of creating a bespoke CMS,
Framework vs an open-source framework?
That's a really good question. Generally I'd agree with
this, but sometimes you just feel like you can build
a better solution to a problem you see people hav-
ing, even though there are other systems that tackle
the same or similar problems. If that's the case, I say
don't be afraid to try it, even if you do run the risk of
reinventing the wheel. When we started with Con-
crete CMS we didn't see any PHP content manage-
ment systems that offered in-context editing the way
we were planning to. As Concrete matured, some sys-
tems have added this capability in varying ways, but
we've really benefited from having our in-context in-
terface be at the forefront of every decision we've ever
made.

You do raise a good question about existing MVC
frameworks and concrete5. In early 2008, when I first
started the full rewrite of what would become con-
crete5, I was initially convinced that the rewrite would
be less wholesale than it ultimately became. To that
end, I thought that bolting on an existing, external open
source framework like Symfony or CakePHP would be
too difficult and time-consuming. Ultimately, however,
we did rewrite most of the entire application, but at that
point the ship had sailed regarding whether we would
use custom MVC functionality or an existing framework.
I don't regret the decision, since using our own MVC
framework has let us do some really interesting things
with blocks, views and controllers, but it does mean that
people have to learn a new way of developing when

Sometimes you just feel
like you can build a better
solution to a problem you see
people having
– Andrew Embler.

3

INTERVIEW

So, what made me decide to create my own
framework?
Well, this is rather simple, about a year ago I was
working on a very large project to do with sustainabil-
ity, the pay was decent & the royalties plenty. Howev-
er, after finishing the project. A question still lingered
at the back of my mind. What other way could it have
been implemented, that would be better and more ef-
ficient?.

After a short period of time I started to sketch out and
develop a non MVC structured framework with the name
'Argent Framework' shortened down to AF. This has the
bog standard (and I mean, very bog standard) methods
which you'd expect from most frameworks. But, my goal
was to be able to attach blocks visually and have the
framework create the file structure for me. At first this
wasn't the case, and it wasn't until I took a long break
and implemented this functionality just a few months
back that this came to fruition.

The core concepts works off of using Processing.js
(which is a Java library) as the UI (user interface) this
communicates with the website - which then commu-
nicates with the database hierarchy. This framework
seems very well suited towards either, small websites
or single purpose data systems. Although this is a rela-
tively niche area. I have aspirations of taking the frame-
work further. Possibly, a rewrite in Ruby as well.

What about the API?
There are literally only a few methods within AF, for in-
stance.

$this->retrob('processing')->setCanvas(500,500,'square.

pcs');

This sets the canvas size in HTML5 for the processing
window and loads the processing sketch in question.

From a developers point of view, however; this is
great as you can position this anywhere in the site and
expect the canvas to appear. From a designers point
of view, that may be complicated. Thus, they can use
shorthand calls to this method like so (within their tem-
plate file).

[@processing-setCanvas:500,500,square.pcs]

If you are interested in reading up a more in depth ver-
sion of what it is, AF is about. Please feel free to check
it out at
www.argentgray.com/whatisaf

Article prepared by Michael Gray

